
Vision link® Raw Telematics Data API

VLRT_API_01_0420
April 2020 VISIDN..INK.

VisionLink® API Programmer Guide

1

Corporate Office
VirtualSite Solutions LLC
10368 Westmoor Drive
Westminster, CO 80021
USA

Legal Notices

Copyright and Trademarks

© 2010– VirtualSite Solutions LLC. All rights reserved.

No part of this publication is to be copied or reproduced in any way without prior written permission
from VirtualSite Solutions LLC.

VirtualSite Solutions is a trademark and trade name of VirtualSite Solutions LLC. VSS is jointly
owned by Caterpillar Inc. (Caterpillar) and Trimble Inc. (Trimble). VisionLink and the "VisionLink"
logo are registered trademarks or trademarks, service marks, or trade dress of Trimble Navigation
Limited, 935 Stewart Drive, Sunnyvale, CA 94085 USA.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. All other trademarks are the property of their respective owners.

Release Notice

This is the April 2020 release (VLRT_API_01_0420) of the VisionLink API Programmer Guide. This
VisionLink API Programmer Guide replaces the VisionLink API Programmer Guide published July 2019
and earlier.

VisionLink® API Programmer Guide

2

Contents

Introduction ... 4

About the VisionLink API ... 4

What's new .. 4

Related information .. 4

Accessing VisionLink API services .. 5

Accessing and managing a queue .. 5

TESTQUEUE .. 6

Authorization to queues .. 6

High level architecture .. 7

API design .. 8

VisionLink data visibility .. 8

REST service ... 9

Why REST for the VisionLink API? .. 9

A closer look at the API service URI .. 10

Current API .. 11

Diagnostics Data ... 11

Digital Switch Status ... 11

Engine Parameters ... 12

Engine Start/Stop Time .. 11

Event Data .. 11

Fleet Summary .. 12

Fuel Information ... 12

Geo Fence Alert .. 12

SMU Location ... 12

Example code .. 12

Java ... 12

C# .. 12

Invoking the service ... 13

Opening a connection .. 13

Java ... 13

C# .. 13

Providing authentication .. 13

Java ... 14

VisionLink® API Programmer Guide

3

C# .. 14

Executing the GET operation .. 14

Java ... 14

C# .. 14

Parsing the result .. 14

Validating versus non-validating parsers ... 14

VisionLink API schema .. 15

Using XSD with Java .. 15

Using XSD with Microsoft C# .. 18

Get the next message buffer .. 22

Java ... 23

C# .. 24

Detecting duplicate messages ... 25

Tying messages together ... 25

Quick start examples ... 26

Java quick start example, version 2.0 ... 26

cat.em.feed.example.QuickStartExample2 .. 26

cat.em.feed.commonv2.NextBuffer .. 27

C# quick start example, version 2.0 ... 28

QuickStart.QuickStartExample ... 28

EMFeed.v2.FeedReader ... 29

EMFeed.v2.NextBuffer ... 33

Frequently asked questions... 37

How can data already read from a queue be re-retrieved? ... 37

Can the API be queried for a specific equipment serial number(s) or date range? 34

How long will data remain in a queue?... 34

Is all data flowing from the VisionLink-enabled equipment placed in an API user's queue? 34

Does reading messages from a queue remove them from the queue? .. 34

How frequently can an API be accessed? ... 34

I’m receiving an error code. What does it mean? ... 38

How do I get support for API? .. 38

VisionLink® API Programmer Guide

4

Introduction
This manual describes the VisionLink® Raw Telematics Data API (known as VisionLink API) and the
services it provides.

Even if you have used the VisionLink API before, VirtualSite Solutions recommends that you spend some
time reading this manual to learn about the special features of this product.

About the VisionLink API
The VisionLink API provides the user access to some of the essential API topics that can be used in the
user-specified application.

What's new
Be sure to use the updated URLs as follows to ensure successful requests for data to our database:

Updated URLs:

https://legacy.myvisionlink.com/APIService/ CATDataTopics/v4/feed/YourOrganization/SMULOC/0

https://legacy.myvisionlink.com/APIService/ CATDataTopics/v5/feed/YourOrganization/Event/0

https://legacy.myvisionlink.com/APIService/ CATDataTopics/v4/feed/YourOrganization/Diagnostic/0

https://legacy.myvisionlink.com/APIService/ CATDataTopics/v6/feed/YourOrganization/Engine/0

Related information
For access to current API documentation and to see sample code, go to:

https://legacy-apidocumentation.myvisionlink.com

This page provides links that enable you to quickly find the information you need to get started with
integrating VisionLink API.

https://legacy-apidocumentation.myvisionlink.com/

VisionLink® API Programmer Guide

5

Accessing VisionLink API services
Follow this procedure to gain access to the VisionLink API services for the first time:

1. Acquire an API queue assignment and request a non-expiring VisionLink API user account
id/password from your VisionLink account administrator.

2. Request your choice of API topics from the VisionLink account administrator.

3. Follow the instructions in the Welcome email to create your API password.

An automatic email notifies you once you are granted access to the API. In the future, request access to
additional API topics by contacting your VisionLink account administrator.

Accessing and managing a queue
To access and manage queues, go to https://legacy-apidocumentation.myvisionlink.com

After you log in, the following screen shows the API programmer resource site:

https://legacy-apidocumentation.myvisionlink.com/

VisionLink® API Programmer Guide

6

This site provides several resources:

 Documentation detailing the content of each API topic.

 Programmer resources to help develop application code to interface with the API.

 Links to XML schema (XSD) that provide access to the schemas describing the XML content for each
topic. The schemas can be used with a validating XML parser to validate the content of the API XML.

 Facilities for managing the topics to which a queue is subscribed.

Potential API users can begin experimenting with the API using the code examples and the test queue
before a dedicated queue is set up for the user’s organization.

TESTQUEUE
As a convenience testing mechanism, a test queue named TESTQUEUE is available for access facilitating
ramp up on API usage. Any authentic API login credentials can be provided as the security credential
required to access the service. The TESTQUEUE is populated with at least one message for each
supported API topic every one hour. As the TESTQUEUE is updated hourly, users can test API access and
also the scheduling of API access, which will produce new message data every hour.

Authorization to queues
To access queue data (other than the TESTQUEUE), the user’s API login credentials must be granted user
access to the queue. If the queue has already been defined, please contact your VisionLink account
administrator to get access to additional login credentials.

VisionLink® API Programmer Guide

7

High level architecture
The API provides a simple REST feed over which device data can be retrieved. The VisionLink API is a
“pull” service. That is, a client invokes the service as needed and pulls the required data to their
computing platform for processing.

The following diagram illustrates the division of responsibility between VirtualSite Solutions IT
infrastructure and the client IT infrastructure. It shows a typical client integrating with the feed and
highlights relative responsibilities owned by VirtualSite Solutions and those owned by the client.

VisionLink® API Programmer Guide

8

API design
The API is not designed as an ad hoc query API (for example, existing VisionLink web services). For
example, you will not find interfaces such as “getLocationForSerialNo” or
“getDiagnosticsForDateAndSerialNo”.
The API is designed to be a queue-oriented replication mechanism. A client of the VisionLink API reads all
VisionLink (VL) messages sent by all equipment to which they have visibility from a single queue. The
intent is that the client “mines” every single message sent by their PL-enabled fleet for which they have
expressed interest and then secures that message within their IT infrastructure as they see appropriate.
The API bookmarking “next buffer” mechanism enables a client to efficiently retrieve delta changes to
their queue data set.

VisionLink data visibility
A VisionLink API is created for each client (dealer or dealer customer) who uses the API. For a dealer, the
dealer’s unique ID (internal database identifier for the dealer in the dealer storefront schema) is attached
to this publisher. For a dealer customer, the customer’s UCID (internal database identifier for customer)
is attached to the publisher.

The API implements a rolling 14-day window for providing all data as reported into VisionLink. The client
system retrieving this data is expected to store it within a period of 14 calendar days. If there is a desire to
retrieve data beyond the standard 14-day window, a separate request to VisionLink support can be
submitted, which will then be handled on a case-by-case basis.

Following is a description of how the API queuing system determines what data is placed into which
queue:

1. As the API queuing process receives VisionLink data, an attempt is made to discover the equipment
on which the VisionLink module is deployed.

2. Once the equipment is located, the system attempts to identify active VisionLink subscription
ownership for that equipment. Subscription level and ownership determines whether or not data
from a specific message is queued to a specific client queue. A client can access all API topics, but
not receive data for all topics in their queue. Accessing an API is an expression of what VisionLink
data a client is interested in. However, the VisionLink subscription level determines whether or not
feed access is honored.

3. The VisionLink Asset Visibility rules also apply for the VisionLink API.

VisionLink® API Programmer Guide

9

REST service
The VisionLink API service is a REST (REpresentational State Transfer) -ful service. REST is not a technology
but an architectural style based on HTTP. Most simply put, REST is a web interface that uses XML over
HTTP. A client using a REST service sends and receives XML through HTTP GET, PUT, POST, and DELETE
operations. REST services can also offer operations such as options, and head, but are less common.

REST differs from web services based on SOAP (Simple Object Access Protocol) in a variety of ways. SOAP
services are based on a series of WS-* standards such as WS-Reliable Messaging, WS-Security, WS-
Addressing, and WS-Transaction. These standards prescribe to the format of XML messages required to
invoke service operations as well as accomplish various features such as security and transactionality.

REST services are sometimes referred to as resource-based as opposed to operation-based as SOAP-
based services are classified by some. A REST resource can be addressed using the URI (Uniform Resource
Identifier). In the case of the VisionLink API the URI is:

URI type URI

(production URI) https://legacy.myvisionlink.com/APIService/CATDataTopics/v4/feed/testqueue/SMULoc/0

The user is requesting version 4 of the VisionLink API service resource smuloc (service meter and location
topic) from the top (0) of the queue named testqueue. For more information, see A closer look at the API
service URI, page 12.

Why REST for the VisionLink API?
One of the advantages for using the VisionLink API is that new device data can be added to the API with
minimal IT investment. Through one generic service in the VirtualSite Solutions IT infrastructure, new
data can flow to a client with no changes to server-side code.

Another advantage is to make the API easy to use, providing as low a barrier to entry as possible. A user
from any standard web browser can experiment with the VisionLink API service, as long as they have
valid API login credentials. As a user becomes familiar with the service, they can move toward more
advanced uses of the service.

VisionLink® API Programmer Guide

10

A closer look at the API service URI
An example API URI is:

https://legacy.myvisionlink.com/APIService/CATDataTopics/v4/feed/testqueue/SMULoc/0

This URI can be deconstructed as follows:

protocol://address/context root/version/service/queue name/topic name/queue position:

Component Name Description

Protocol - https Protocol over which this request flows. API service resources are served through
secured HTTP to protect the user ID and password that flow across the wire for each
request.

Address Address or DNS name of the API service

Context root - API
Service

APIService

This is referred to as the context root of the service and can simply be thought of as a
further qualification of the service address.

Version – v4 The version of the resource being requested. Over time, it is likely that changes will
occur to API interfaces. This version allows for the coexistence of legacy interfaces
beside newer versions of the same interface.

Service - feed Service from which data is being requested.

Queue name -
TESTQUEUE

Device data is collected into queues. For example, a dealer named abc123 would be
assigned a queue named abc123, which would be used in the URI requesting API
service.

Topic name - SMULOC Device data is organized into logical groupings called topics. The smuloc topic contains
service meter and location data. Other topics include event, diagnostic, and fuel. Topic
data can be extracted from one or many device message types.

Queue position - 0 Each message that flows over the VisionLink API is assigned a unique ID. By specifying a
queue position, the client is directing the service to return data beyond the ID provided
in the URL. Zero can be used to start retrieving data from the top of the queue.
VisionLink API are FIFO (first in, first out) queues.

This address can be entered directly into a standard browser address dialog. The resulting XML appears
in the browser window if appropriate user privileges have been granted to the login credentials issuing
the request. The queues present in the Queues drop-down list are those to which the user’s login
credentials have been granted access.

VisionLink® API Programmer Guide

11

Current API
Here is a list of all current API and a brief description of the kind of data each exposes.

Note – The URL shown for each API contains the API version that was current at the time of publication.
Your API version may be different.

For additional details about individual fields, refer to the actual schema documents pertaining to each
API (outlined in Accessing VisionLink API services, page 6).

Diagnostics Data
One of the three faults generated on-board the ECM. A diagnostic refers to a process within an electronic
control module (ECM) of detection, display, and/or storage of abnormal asset/engine information.

Primarily provides the following information:

 The severity level of the diagnostic (0=Unknown, 1=Low, 2=Medium, 3=High)

 The MID (machine component identifier) reporting the event

 The FMI (failure mode indicator) identifies the diagnostic

 The CID (component identifier) describes the on-board sensor that reported the diagnostic

(Both FMI and CID are internal details of how the Caterpillar Data Link polls the diagnostic and can be
cross-referenced to the Service Information System (SIS) to locate troubleshooting steps)

 The timestamp (in UTC) when the diagnostic was generated

URL: https://legacy.myvisionlink.com/APIService/CATDataTopics/v4/feed/testqueue/Diagnostic/0

Digital Switch Status
Delivers all relevant status information about the power mode and digital switch turned on/off on the
PLM module.

Communicates the particular status information of the ECM.

The switch active flags correlate to one of the four digital switches that are allowed on specific devices (or
one of up to seven digital switches for specific devices). If any of the bytes that it defines is set to “Yes”,
this indicates that a particular condition has occurred since the last report of this status byte in either the
status message or SMU report. The state change is relative to the digital switch configuration that has
been configured on the device.

The pending flag indicates whether an event or diagnostic is queued when this message was sent.

URL: https://legacy.myvisionlink.com/APIService/CATDataTopics/v3/feed/testqueue/DigStatus3/0

https://legacy.myvisionlink.com/APIService/CATDataTopics/v3/feed/testqueue/DigStatus3/0

VisionLink® API Programmer Guide

12

Engine Parameters
Delivers all the information gathered by the Engine ECM.

Primarily provides the following information:

 Maximum theoretical Fuel Burned by the asset when under full load

 Idle Fuel consumed when the asset is in neutral and none of the implements is working

 Actual fuel consumption by the asset

 Total number of engine starts

 Total number of engine revolutions

The uom indicates the unit of measure for each value field found in the response from the API. The data
feed provides the value and unit of measure in case any conversions (for example, gallons to liters) must
occur. Count indicates that a value is a numeric count of occurrences.

URL: https://legacy.myvisionlink.com/APIService/CATDataTopics/v6/feed/testqueue/Engine/0

Engine Start/Stop Time
Delivers a list of engine start and engine stop times for the asset.

URL: https://legacy.myvisionlink.com/APIService/CATDataTopics/v3/feed/testqueue/StartStop/0

Event Data
Delivers ECM event data to VisionLink.

Primarily provides the following information:

 The event severity level (0=Unknown, 1=Low, 2=Medium, 3=High)

 The MID (machine component identifier) reporting the event

 The event identifier (also known as EID)

 The event occurrence count

URL: https://legacy.myvisionlink.com/APIService/CATDataTopics/v5/feed/testqueue/Event/0

VisionLink® API Programmer Guide

13

Fleet Summary
Delivers a high-level look at the current status of your fleet.

Primarily provides the following information:

 Current latitude/longitude of the asset

 Address (reverse-geocoded address based on current latitude/longitude; blank if no address lookup
can be made)

 Last location (timestamp of the last time the asset’s location was reported, in UTC)

 Last reported (timestamp of the last time the device reported, in UTC)

 Fuel percent remaining

 Runtime hours

 Lifetime fuel consumed
 Last known status

URL: https://legacy.myvisionlink.com/APIService/AEMP/v1/Fleet

Fuel Information
Delivers all the information gathered by the Fuel ECM.

Primarily provides the following information:

 Actual fuel consumption by the asset

 Percentage level of remaining fuel for an asset

URL: https://legacy.myvisionlink.com/APIService/CATDataTopics/v4/feed/testqueue/Fuel/0

Geo Fence Alert
Delivers geofence entry and exit, using geofences dispatched to the device.

PL321/PL121 devices support one inclusive, up to five exclusive geofences, and a one-time fence at any
time. Each type of fence (inclusive, exclusive, time) can be active (enabled) or alarming (currently being
violated) at any time. The remaining flags indicate whether the device was currently experiencing a
satellite blockage (the device has no view to a satellite) or if the master disconnect switch was used.

URL: https://legacy.myvisionlink.com/APIService/CATDataTopics/v6/feed/testqueue/FenceAlert/0

VisionLink® API Programmer Guide

14

SMU Location
Delivers the equipment usage by hours since the PLM module was turned on or was last reset in addition
to the latitude and longitude of the asset on which the telematics device is mounted.

URL: https://legacy.myvisionlink.com/APIService/CATDataTopics/v4/feed/testqueue/SMULOC/0

Example code

To view example Java and .NET C# code, go to:

https://legacy-apidocumentation.myvisionlink.com

You can download two zip files from the site. Examples range from simple connectivity and topic access
to more advanced examples illustrating techniques for parsing XML response.

Example code
Java
The Java code example zip file contains four examples:

 One validating (Castor) XML parsing example.

 Two non-validating (Castor and XStream) XML parsing examples.

 A quick start example that illustrates simple service connectivity and navigation:

 Quick start

 XML serialization

Refer to the Readme.txt in the zip file and carefully read the code comments.

C#
The C# zip file contains two sample solutions:

 DataFeedQuickStart – QuickStart.cs illustrates simple service connectivity and navigation.

 DataFeedSerialization – FeedSerializerMain.cs illustrates service connectivity, navigation, and XML
parsing through using Microsoft® XSD serialization tooling.

https://legacy.myvisionlink.com/APIService/CATDataTopics/v4/feed/testqueue/SMULOC/0
https://legacy-apidocumentation.myvisionlink.com/

VisionLink® API Programmer Guide

15

Invoking the service
Since the service is accessible through an HTTPS GET operation, a user can access the service through a
standard web browser. This can be valuable in order to understand data content and navigation.

However, the API service is designed to be a program-to-program integration technology. Programmatic
access to the service can be broken into the following steps:

1. Opening a connection.

2. Providing authentication.

3. Executing the “GET” operation.

4. Parsing the result.

5. Getting the next message buffer.

This section shows .NET C# and Java examples.

For more information, see Quick start examples, page 27. The sections below show a sample of the
complete examples and describe their function.

The queue name TESTQUEUE is available in the Production API environment and serves as a test queue
from which clients can access data as they experiment with the VisionLink API.

Opening a connection
Most, if not all, modern programming languages provide functionality that allow for opening an HTTP
connection. To open the HTTPS connection, the client program must have access to the public SSL
certificate available at the appropriate API address.

Java
Note – Address (https://legacy.myvisionlink.com/APIservice/CATdataTopics)

URL url = new URL(address);
HttpURLConnection urlConnection = (HttpURLConnection)
url.openConnection();

C#
Note – url (https://legacy.myvisionlink.com/APIservice/CATdataTopics)

HttpWebRequest request = WebRequest.Create(url) as
HttpWebRequest;

Providing authentication
The API service is secured through HTTP Basic Authentication. Access to the TESTQUEUE is through using
any VisionLink logon credentials.

VisionLink® API Programmer Guide

16

Java
BASE64Encoder aEncoder = new BASE64Encoder();
String encodedString =
(aEncoder.encodeBuffer(new
String(getUsername().concat(":").concat(getPassword())).getBytes
()));
encodedString = encodedString.substring(0,encodedString.length()
- 2);
urlConnection.setRequestProperty("Authorization", "Basic "+
encodedString);

C#
request.Credentials = new NetworkCredential(login, password);

Executing the GET operation
The API service supports only the HTTP GET operation. The GET is executed as follows.

Java

urlConnection.setRequestMethod("GET");
urlConnection.setDoOutput(true);
urlConnection.connect();
BufferedReader reader = new BufferedReader(new InputStreamReader
(urlConnection
.getInputStream()));

C#
response = (HttpWebResponse) request.GetResponse();

Parsing the result

Validating versus non-validating parsers
An XML document can be parsed in one of two modes: validating or non-validating.

Validating

In validating mode, another document provides the XML parser with rules that define the content of a
properly formed XML document. Some of these rules might include:

 The number of occurrences of a specific field that should be present.

 The data type of a specific field: integer, string.

 The length of a string field.

VisionLink® API Programmer Guide

17

 The appropriate values that a field should contain.

 The appropriate tag names the document should contain.

The validation document can take the form of a DTD (Document Type Definition) or an XSD (XML Schema
Definition). Many more recent XML interfaces are accompanied with an XSD as XSD technology provides
a number of benefits over the older DTD validation document style.

XSD documents will be provided for the VisionLink API.

A benefit of an XSD is that you can use off-the-shelf tools to parse and validate the content of an XML
schema using an XSD. In addition, tools exist that can generate language specific (for example, Java, C#)
objects containing the appropriately typed fields (for example, long, int, string) to receive XML content.

Non-validating

The user of an XML document can choose to trust that the provider of a XML document provides a well-
formed document (where well-formed could be defined as conforming to example XML or interface
documentation) and not use the XSD at all. In this mode of operation, you either manually code your
own validations or skip the validation altogether. You would also need to create codes that can extract
content from an XML response. There are off-the-shelf frameworks that make non-validating parsing
much easier (for example, Stream in the Java space).

The quick start examples provided in this document do not show how to parse the VisionLink API
response.

VisionLink API schema
An XSD is provided for each VisionLink API interface, for example, service meter, location, fault, and
event.

For sample schemas, go to: https://legacy-apidocumentation.myvisionlink.com

Using XSD with Java
The code examples illustrate the use of two popular open source frameworks for parsing XML.

Both Castor and XStream examples can be executed from within the example class:

example.FeedObjectSerializationExampleV2

Comments within the class contain instructions that show the user how to activate examples illustrating
the use of each framework.

Castor

Castor is a framework that can parse and validate XML using XML schema.

Castor features utilities that can be used to generate Java serialization codes. The code examples do not
use this feature but rather illustrate a simple configuration scheme easily modified to support new API
topics. Castor configuration can be found in the example project comfit/castor folder. The following
configuration files can be found:

https://legacy-apidocumentation.myvisionlink.com/

VisionLink® API Programmer Guide

18

 castor.properties – This properties file provides configuration that enables Castor integration with

SAX parsers.

 castor-common-mappingV2.xml – Contains mappings for XML common to multiple API topics, for
example, location, equipment.

 castor-mappingV2.xml – Primary Castor config file that includes common config and topic specific
config sufficient for a non-validating parser implementation.

 castor-smuloc-validatingV2.xml – Primary Castor configuration file that includes common
configuration and topic specific configuration sufficient for a validating parser implementation.

 castor-smuloc-mappingV2.xml – Mapping configuration for service meter location API topic.

 mapping.xsd – XML schema defining castor XML config syntax.

XStream

XStream is a high-performing easy-to-use XML framework. However, XStream does not offer XML
validation via XML schema.

To help in the use of XStream for processing VisionLink API responses, tshe Java zip file contains a
configuration driven XStream implementation.

XStream configuration can be found in the example project config/xstream folder. The following
configuration files can be found:

 feed-xstream-mappingV2.xml – This configuration breaks up API mapping into:

 Root node (top level API response XML node)

 Header node (mapping for the XML node containing information common between all API topics)

 Message node (mapping for message node)

 Body nodes (mapping for message body content)

The feed-xstream-mappingV2.xml configuration file provides configuration for the classes that can be
found in cat.em.feed.xstream. If you do not want to use these XStream wrapping/configurable classes,
the classes can be used as examples of how to use the XStream parser API.

Using XSD with Microsoft C#
The Microsoft XSD utility can considerably ease the task of XML processing.

Note – These instructions apply to Microsoft Visual Studio 2005. Depending on the version you are
using, your procedure may differ slightly.

To execute the Microsoft XSD utility from the command line:

1. Go to the Visual Studio Command prompt (select Windows Start / All Programs / Microsoft Visual
Studio 2005 / Visual Studio Tools / Visual Studio 2005 Command Prompt.)

2. At the command line, enter the following example:
xsd /c /l:cs CommonSchema.xsd ServiceMeterLocation.xsd

3. Access the VisionLink API schema from the Internet and then place them in a directory that is visible
to the utility:
https://legacy-apidocumentation.myvisionlink.com

https://legacy-apidocumentation.myvisionlink.com/

VisionLink® API Programmer Guide

19

XSD utility from within Visual Studio

To configure Visual Studio to generate C# codes for processing the VisionLink API:

1. Add the XSD utility to the External Tools menu (select Tools / External Tools / Add).

2. Set the title to something suitable; for example, GenerateAPISMULoc.

3. Set command to c:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin\ xsd.exe (assumes
you are at Visual Studio 2005).

4. To display tool output in Visual Studio, select the Use Output Window check box.

5. Set arguments to /c /l:cs CommonSchema.xsd ServiceMeterLocation.xsd. Use the /n:Feed.V2
option to control the namespace in which the generated class is placed.

6. Set Initial Directory to the directory you want the CS file to be deposited; for example, $(ItemDir).

7. Put copies of the VisionLink API schema into the chosen directory. For more information about
acquiring the API schema, see Invoking the service, page 17. If you selected $(ItemDir) as your
Initial Directory, you can place XSD files directly in the solution root directory.

8. To run it, select Tools / GenerateAPISMULoc.

9. The generated serialization .cs class is not immediately added to your project. The first time you run
it, you need to add CommonSchema_ServiceMeterLocation.cs, for example, to the project. To do
this, from the shortcut menu select Add / Existing Item.

You must still create custom code to use the generated mapping class. Refer to the EMFeedSerializer.cs
example provided in the C# examples zip file.

VisionLink® API Programmer Guide

20

Get the next message buffer
Every API topic response contains a <nextBuffer> tag. This tag contains a URL that, if invoked, returns the
next buffer of API messages for a specific queue and topic. The blue highlighted tag value below could be
copied and pasted into a browser address entry to retrieve the next buffer.

When accessing the API programmatically, correct use of this value is essential to client performance as
well as to the preservation of service performance.

After each successful service access, the client application should save the next buffer URL value to a
database table, for example, and be used in the next API access. Managing the nextBuffer this way
guarantees that only the incremental additions to the queue since the last access are retrieved, which
makes the service more available and responsive by improving client performance and reducing the load
on the service.

Note – The version 2 interface added the moreData tag. The moreData tag was added to prevent clients
from “spinning” or retrieving a single message on every request. More data will return false if there are
not enough messages to fill the message buffer size configured for a specific queue. The default buffer
size is 500. If moreData indicates false, the client should not invoke the URL indicated in the nextBuffer
URL tag until the next scheduled client invocation interval. For example, if a client application is
scheduled to invoke the API every 15 minutes and a moreData false is returned, the client should wait
15 minutes until invoking the URL returned in the last successful invocation. If moreData returns true,
the client can immediately invoke the URL indicated in the nextBuffer tag (a one-second wait would be
appropriate).

<?xml version="1.0" encoding="UTF-8"?>
<smuLoc:topic

xmlns:smuLoc="http://www.cat.com/em/feed/v4/ServiceMeterLocation"

xmlns:feed="http://www.cat.com/em/feed/v4/Common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.cat.com/em/feed/v4/ServiceMeterLocatio
n
https://emfeed.rd.cat.com/EMFeedFiles/schema/v4/ServiceMeterLocation.
xsd

<nextBuffer>
<url>
https://legacy.myvisionlink.com/APIService/CATDataTopics/v4/feed/
testqueue/SMULoc/0
</url>

<moreData>true</moreData>
</nextBuffer>
<message>
<header>
<messageId>4967366</messageId>
<masterMsgId>4184753</masterMsgId>
<equipment>
<serialNumber>1CF08874</serialNumber>
<make>ING</make>

</equipment>
<moduleCode>DATA_FEED_TEST08874</moduleCode>
<moduleTime>2008-08-08 17:38:08</moduleTime>

http://www.cat.com/em/feed/v4/ServiceMeterLocation
http://www.cat.com/em/feed/v4/Common
http://www.w3.org/2001/XMLSchema-instance
http://www.cat.com/em/feed/v4/ServiceMeterLocatio

VisionLink® API Programmer Guide

21

<receivedTime>2008-08-08 17:38:16</receivedTime>
</header>
<location>
<latitude>34.21137</latitude>
<longitude>-84.13144</longitude>
<validity>V</validity>

</location>
</message>

</smuLoc:topic>

Synchronize access to a specific topic (for example, smuloc) between multiple threads. For example, if a
client wants to execute API access in multiple threads, access to the nextBuffer bookmark should be
synchronized between the threads to ensure that duplicate messages are not delivered to the client.
That is, for a specific topic (for example, smuloc), only one client thread should execute requests at any
occasion (that is, single-thread topic requests).

Processing topic responses on the client-side can be multi-threaded. A single topic reading thread could
dispatch responses for processing to multiple client-side processing threads. In addition, the client could
create multiple topic reading threads provided that each topic reading thread reads only one topic at a
specific time. For example, individual topic reading threads for smuloc, fuel, and fault could be executing
at the same time.

Note – The data API is stateless. Accesses to your queue do not modify the state of your queue. You can
access the same queue bookmark repeatedly. If the previous invocation returned moreData=false, the
next buffer URL returned in that request response should still be used for the next invocation. If the
previous invocation resulted in a 404 (No Data Found) exception, the URL that produced the 404 error
should be used to invoke the service again on your next scheduled invocation. Your persisted bookmark
should only be advanced using the value returned in the URL field of nextBuffer resulting from a
successful API invocation.

Java

FeedReader reader = new FeedReader(APPLICATION_ID, PASSWORD);
String response = null;
BufferedReader breader = reader.getFeedReader(bookMark);
NextBuffer buffer = new NextBuffer();
buffer.setMoreData(true);
while (breader != null && buffer.isMoreData()) {
response = readResponse(breader);
System.out.println(response);
buffer = findNextBuffer(response);
bookMark = buffer.getUrl();
System.out.println(bookMark);
saveBookMark(buffer.getUrl());
if (buffer.isMoreData()) {
breader = reader.getFeedReader(bookMark);

}
}
privatestatic NextBuffer findNextBuffer(String response) {
NextBuffer buffer = new NextBuffer();
String nextBufferTag = extractTagValue(response,NEXT_BUFFER,NEXT_BUFFER_END);
buffer.setUrl(extractTagValue(nextBufferTag,URL,URL_END));
String boolString = extractTagValue(nextBufferTag,MORE_DATA,MORE_DATA_END);

VisionLink® API Programmer Guide

22

buffer.setMoreData(Boolean.parseBoolean(boolString));
return buffer;

}

C#

HttpWebResponse response = MakeRequestWithBasicAuth(address, APPLICATION_ID,
PASSWORD);

NextBuffer buffer = null;
string xml = null;
Boolean moreData = true;
while (response != null && moreData)
{
xml = newStreamReader(response.GetResponseStream()).ReadToEnd();
Console.Out.WriteLine(xml);
buffer = FindNextBuffer(xml);
address = buffer.Url;
moreData = buffer.MoreData;
SaveBookMark(address);
response = MakeRequestWithBasicAuth(address, APPLICATION_ID,
PASSWORD);
}
privateNextBuffer FindNextBuffer(string xml)
{
int start = xml.IndexOf(NEXT_BUFFER);
int end = xml.IndexOf(NEXT_BUFFER_END);
if (start > -1 && end > -1)

{
string nbuff = xml.Substring(start + NEXT_BUFFER.Length, end -
start -
NEXT_BUFFER_END.Length + 1);
start = nbuff.IndexOf(URL)+URL.Length;
end = nbuff.IndexOf(URL_END);
string url = nbuff.Substring(start, end-start);
start = nbuff.IndexOf(MORE_DATA) + MORE_DATA.Length;
end = nbuff.IndexOf(MORE_DATA_END);
string moreDataStr = nbuff.Substring(start, end - start);
Boolean moreData = Boolean.Parse(moreDataStr);
returnnewNextBuffer(moreData, url);

}
else
{
thrownewException("No next buffer tag found.");

}
}

VisionLink® API Programmer Guide

23

Detecting duplicate messages
Each API message contains a <messageId> tag. The client to detect duplicate message delivery can utilize
this tag. Depending on how the client manages maintenance of the nextBuffer value, the client could
receive duplicate messages.

To determine if a specific message was previously processed, use the combination <messageID>,
<masterMsgID>, <timeStamp>, and <receivedTime>. These items together uniquely identify a record.

Tying messages together
Each API message also contains a <masterMsgId> tag. This value allows for the association of messages
across multiple API topics. For example, a message received in the smuloc topic with masterMsgId 12345
can be associated with a message received in the event API topic with the same masterMsgId 12345. That
is, an event occurred at a specific location. The event topic message can be tied to a located provided in
the smuloc topic.

VisionLink® API Programmer Guide

24

Quick start examples

Java quick start example, version 2.0

cat.em.feed.example.QuickStartExample2
package cat.em.feed.example;
/*
* Copyright (c) 2010 VirtualSite Solution LLC. All Rights
Reserved.
*
* This work contains VirtualSite Solution LLC. Unpublished
* proprietary information which may constitute a trade secret
* and/or be confidential. This work may be used only for the
* purposes for which it was provided, and may not be copied
* or disclosed to others. Copyright notice is precautionary
* only, and does not imply publication.
*/

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.StringWriter;

import cat.em.feed.commonv2.NextBuffer;

public class QuickStartExample2 {

/*
* Insert your VirtualSite Solution LLC non-expiring application
id here.
*/
private static String APPLICATION_ID = "XXXXX";

/*
* Insert your VirtualSite Solution LLC non-expiring application
id password
* here.
* For experimentation with the "TESTQUEUE" you can provide your
own personal
* cws user id and password.
*
* By default this example hits our production TESTQUEUE. If you
change the
* example to utilize QA and are experimenting with your personal
CWS account
* be sure to provide your QA CWS password.
*/
private static String PASSWORD = "XXXXX";

private static String NEXT_BUFFER = "<nextBuffer>";

VisionLink® API Programmer Guide

25

private static String NEXT_BUFFER_END = "</nextBuffer>";
private static String URL = "<url>";
private static String URL_END = "</url>";
private static String MORE_DATA = "<moreData>";
private static String MORE_DATA_END = "</moreData>";

/**

* @param args
*/
public static void main(String[] args) {
/*
* QA address.
*/
//String bookMark =
"https://legacy.myvisionlink.com/APIService/CATDataFeedTopics/v
2/feed/
TESTQUEUE/SMULOC/0";

/*
* Prod address.
*/

String bookMark =
"https://legacy.myvisionlink.com/APIService/CATDataTopics/v2/feed
/testqueue/
SMULoc/0";

FeedReader reader = new FeedReader(APPLICATION_ID, PASSWORD);

String response = null;
BufferedReader breader = reader.getFeedReader(bookMark);
NextBuffer buffer = new NextBuffer();
buffer.setMoreData(true);
while (breader != null && buffer.isMoreData()) {

response = readResponse(breader);
System.out.println(response);
buffer = findNextBuffer(response);
bookMark = buffer.getUrl();
System.out.println(bookMark);
saveBookMark(buffer.getUrl());
if (buffer.isMoreData()) {
breader = reader.getFeedReader(bookMark);
}

}
}

/**
* @param breader
* @return
*/
private static String readResponse(BufferedReader breader) {

try {
StringWriter swriter = new StringWriter();
BufferedWriter writer = new BufferedWriter(swriter);

VisionLink® API Programmer Guide

26

String line = breader.readLine();
while (line != null) {
if (line != null) {
writer.write(line);
writer.newLine();
}
line = breader.readLine();
}
writer.close();
breader.close();
swriter.close();
return swriter.toString();
} catch (IOException e) {
throw new RuntimeException(e);
}

}

/**
* @param response
* @return
*/
private static NextBuffer findNextBuffer(String response) {

NextBuffer buffer = new NextBuffer();
String nextBufferTag = extractTagValue(response,NEXT_BUFFER,NEXT_
BUFFER_END);
buffer.setUrl(extractTagValue(nextBufferTag,URL,URL_END));

String boolString = extractTagValue(nextBufferTag,MORE_DATA,MORE_
DATA_END);
buffer.setMoreData(Boolean.parseBoolean(boolString));
return buffer;

}

/**
* @param response
* @return
*/
private static String extractTagValue(String tag, String

tagBegin, String tagEnd) {

int start = tag.indexOf(tagBegin);
int end = tag.indexOf(tagEnd);
if (start > -1 && end > -1) {
return tag.substring(start + tagBegin.length(), end);
} else {
throw new RuntimeException("No tag value found.");
}

}

/**
* @param bookMark
*/

VisionLink® API Programmer Guide

27

private static void saveBookMark(String bookMark) {
/*
* Each feed response contains a nextBuffer attribute that
represents
* the url to be invoked to retrieve the next buffer of messages
* immediately following the messages represented in the
response. The
* last parameter of the bookmark is a number that represents the
unique
* message identifier of the last message in the retrieved
result. This
* unique id is also contained within each message body as
<messageId>.
*
* By saving this book mark the app developer can insure that...
*
* A) If a client side application crash or restart occurs the
next
* invocation of the feed will produce new data (i.e. data not
yet
* received by the client.
*
* B) The response is received as quickly as possible given that
only
* new data will be queried.
*
* C) If all clients track their book mark and retrieve the
minimum
* number of records required, the stability and responsiveness
of the
* service for all clients will be insured.
*
* It is very important that the app developer make an attempt at
* managing their client side state/bookmark.
*/

}
}

cat.em.feed.commonv2.NextBuffer
package cat.em.feed.commonv2;

public class NextBuffer {
private String url;
private boolean moreData;

public NextBuffer() {

super();
}
public String getUrl() {

return url;

VisionLink® API Programmer Guide

28

}
public void setUrl(String url) {

this.url = url;
}
public boolean isMoreData() {

return moreData;
}
public void setMoreData(boolean moreData) {
this.moreData = moreData;

}
}

C# quick start example, version 2.0

QuickStart.QuickStartExample
using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.Net;
//using EMFeed.v1;
using EMFeed.v2;

namespace QuickStart
{

/// <summary>
/// Copyright (c) 2010 VirtualSite Solution LLC. All Rights
Reserved.
/// This work contains VirtualSite Solution LLC.Unpublished
/// proprietary information which may constitute a trade
secret
/// and/or be confidential. This work may be used only for the
/// purposes for which it was provided, and may not be copied
/// or disclosed to others. Copyright notice is precautionary
/// only, and does not imply publication.
///
/// This class illustrates a very simple approach for
connecting to the EM feed service and reading XML
response. The EM feed service is a /// RESTful service

serving XML over https.
/// </summary>
classQuickStartExample
{

staticvoid Main(string[] args)
{
newFeedReader().Execute();

VisionLink® API Programmer Guide

29

}

}

}

EMFeed.v2.FeedReader
using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.Net;

namespace EMFeed.v2
{
/// <summary>
/// Copyright (c) 2010 VirtualSite Solution LLC. All Rights
Reserved.
/// This work contains VirtualSite Solution LLC.'s unpublished
/// proprietary information which may constitute a trade secret
/// and/or be confidential. This work may be used only for the
/// purposes for which it was provided, and may not be copied
/// or disclosed to others. Copyright notice is precautionary
/// only, and does not imply publication.
/// </summary>
classFeedReader
{
privateconststring NEXT_BUFFER = "<nextBuffer>";
privateconststring NEXT_BUFFER_END = "</nextBuffer>";
privateconststring URL = "<url>";
privateconststring URL_END = "</url>";
privateconststring MORE_DATA = "<moreData>";
privateconststring MORE_DATA_END = "</moreData>";

/*

* Insert your VirtualSite Solution LLC non-expiring
application id here.
* For experimentation with the "TESTQUEUE" you can provide
your own personal cws user id
* and password.
*
*/
privateconststring APPLICATION_ID = "XXXXX";

/*
* Insert your VirtualSite Solution LLC provided application
password.
*
* By default this example hits our production TESTQUEUE. If
you change the example to utilize

VisionLink® API Programmer Guide

30

* QA and are experimenting with your personal CWS account be
sure to provide your QA CWS
* password.
*/
privateconststring PASSWORD = "XXXXX";

publicvoid Execute()
{
/*

* QA service url.
*/

/*
* Production service url.
*/
string address =

"https://legacy.myvisionlink.com/APIService/CATDataTopics/v2
/feed/testqueue/SMULoc/0”;

/*
* Make a request to the Feed Service, providing login and
password for basic authentication.
*/

HttpWebResponse response = MakeRequestWithBasicAuth(address,
APPLICATION_ID,
PASSWORD);

NextBuffer buffer = null;
string xml = null;
Boolean moreData = true;
while (response != null && moreData)
{
xml = newStreamReader(response.GetResponseStream
()).ReadToEnd();
Console.Out.WriteLine(xml);
buffer = FindNextBuffer(xml);
address = buffer.Url;
moreData = buffer.MoreData;
SaveBookMark(address);
response = MakeRequestWithBasicAuth(address, APPLICATION_
ID, PASSWORD);
}

}

/// <summary>
/// Locates the next buffer url in the xml response.
/// </summary>
/// <param name="xml"></param>
/// <returns></returns>
privateNextBuffer FindNextBuffer(string xml)
{

VisionLink® API Programmer Guide

31

int start = xml.IndexOf(NEXT_BUFFER);
int end = xml.IndexOf(NEXT_BUFFER_END);
if (start > -1 && end > -1)
{
string nbuff = xml.Substring(start + NEXT_BUFFER.Length, end -
start -
NEXT_BUFFER_END.Length + 1);
start = nbuff.IndexOf(URL)+URL.Length;
end = nbuff.IndexOf(URL_END);
string url = nbuff.Substring(start, end-start);
start = nbuff.IndexOf(MORE_DATA) + MORE_DATA.Length;
end = nbuff.IndexOf(MORE_DATA_END);
string moreDataStr = nbuff.Substring(start, end - start);
Boolean moreData = Boolean.Parse(moreDataStr);
returnnewNextBuffer(moreData, url);

}
else
{
thrownewException("No next buffer tag found.");

}
}

/// <summary>
/// Creates the appropriate basic auth credential and invokes
the provided url.
/// </summary>
/// <param name="url"></param>
/// <param name="login"></param>
/// <param name="password"></param>
/// <returns></returns>
privateHttpWebResponse MakeRequestWithBasicAuth(string url,
string login, string password)
{
HttpWebRequest request = WebRequest.Create(url)
asHttpWebRequest;
request.Credentials = newNetworkCredential(login, password);
HttpWebResponse response = null;
try
{
response = (HttpWebResponse)request.GetResponse();

}
catch (WebException e)
{
if (((HttpWebResponse)e.Response).StatusCode ==
HttpStatusCode.NotFound)
{

// return null response
}
else
{
throw e;
}

}
return response;

VisionLink® API Programmer Guide

32

}

/// <summary>
/// Saves the current buffer book mark.
/// </summary>
/// <param name="xml"></param>
/// <returns></returns>
privatevoid SaveBookMark(string address)
{

/*
* Each feed response contains a nextBuffer attribute that
represents
* the url to be invoked to retrieve the next buffer of
messages
* immediately following the messages represented in the
response. The
* last parameter of the bookmark is a number that represents
the unique
* message identifier of the last message in the retrieved
result. This
* unique id is also contained within each message body as
<messageId>.
*
* By saving this book mark the app developer can insure
that...
*
* A) If a client side application crash or restart occurs the
next
* invocation of the feed will produce new data (i.e. data not
yet
* received by the client.
*
* B) The response is received as quickly as possible given
that only
* new data will be queried.
*
* C) If all clients track their book mark and retrieve the
minimum
* number of records required, the stability and responsiveness
of the
* service for all clients will be insured.
*
* It is very important that the app developer make an attempt
at
* managing their client side state/bookmark.
*/
}

}
}

VisionLink® API Programmer Guide

33

EMFeed.v2.NextBuffer
using System;
using System.Collections.Generic;
using System.Text;

namespace EMFeed.v2
{
classNextBuffer
{
privatestring url;
privateBoolean moreData;

public NextBuffer(Boolean moreData, String url)
{
this.moreData = moreData;
this.url = url;

}

publicstring Url
{
get
{
returnthis.url;

}
set
{
this.url = value;

}
}

publicBoolean MoreData
{
get
{
returnthis.moreData;

}
set
{
this.moreData = value;

}
}

}
}

VisionLink® API Programmer Guide

34

Frequently asked questions

How can data already read from a queue be re-retrieved?
The number at the end of the url represents the position in the queue to be read. A typical API URL might
look like the following:

https://legacy.myvisionlink.com/APIService/CATDataTopics/v4/feed/testqueue/SMULoc/0

By resetting the API “bookmark” to 0, data can be retrieved from the beginning or head of the queue. As
noted above in the VisionLink data visibility section, the ‘beginning of the queue’ is defined as data that
was received by VisionLink ‘before 14 calendar days’.

Can the API be queried for a specific equipment serial
number(s) or date range?
No, the API is designed as a queue-oriented “data pump” interface. A queue is essentially a bucket into
which all subscribed to VisionLink data is placed. The design intent is to provide a very simple interface
through which a client could mine all VisionLink data with the intent of securing that data within their
own IT infrastructure.

How long will data remain in a queue?
For two weeks (14 calendar days) to guarantee the API responsiveness/performance.

Is all data flowing from the VisionLink-enabled equipment
placed in an API user's queue?
Not necessarily. Only data that is normally visible to the owner through the VisionLink user interface will
be accessible through the VisionLink API. See VisionLink data visibility, page 10 for more detail.

Does reading messages from a queue remove them from the
queue?
No. The API is stateless, which enables a user to repeatedly read the API queue messages without
changing the state of the queue.

How frequently can an API be accessed?
The API can be accessed once every second per user login. If there are multiple user logins, they can
make parallel requests.

VisionLink® API Programmer Guide

35

I’m receiving an error code. What does it mean?
Some of the common error codes that can be encountered during execution of an API:

 HTTP 400 - Bad Gateway. This means that the API request did not complete in the specified amount of
time (typically 2 minutes).

 HTTP 401 - Unauthorized. This means that the username/password used to make the API request is
not valid. The calling system will need to double-check the credentials being used. If necessary,
contact VisionLink support for password update requests.

 HTTP 404 - Resource not found. This means that the bookmark that is being used in the API request
does not exist.

 HTTP 500 - Internal Server Error. This means that the API request could not be satisfied due to an
unexpected error during processing.

How do I get support for API?
If an API request is returning an error code that needs explanation, the best way to get support is to
contact your dealer or dealer representative. Send an email outlining the nature of your problem to
allow VisionLink experts to evaluate your problem and provide a solution.

	Corporate Office
	Legal Notices
	Copyright and Trademarks
	Release Notice

	Contents
	Introduction
	About the VisionLink API
	What's new
	Related information
	Accessing VisionLink API services
	Accessing and managing a queue
	TESTQUEUE
	Authorization to queues
	High level architecture
	API design
	VisionLink data visibility
	REST service
	Why REST for the VisionLink API?
	A closer look at the API service URI
	Current API
	Diagnostics Data
	Digital Switch Status
	Engine Parameters
	Engine Start/Stop Time
	Event Data
	Fleet Summary
	Fuel Information
	Geo Fence Alert
	SMU Location

	Example code
	Java
	C#

	Invoking the service
	Opening a connection
	Java
	C#

	Providing authentication
	Java
	C#

	Executing the GET operation
	Java
	C#

	Parsing the result
	Validating versus non-validating parsers
	Validating
	Non-validating

	VisionLink API schema
	Using XSD with Java
	Castor
	XStream

	Using XSD with Microsoft C#
	xsd /c /l:cs CommonSchema.xsd ServiceMeterLocation.xsd

	Get the next message buffer
	Java
	C#

	Detecting duplicate messages
	Tying messages together
	Quick start examples
	Java quick start example, version 2.0
	cat.em.feed.example.QuickStartExample2
	* @return
	try {
	* @return
	* @return

	cat.em.feed.commonv2.NextBuffer

	C# quick start example, version 2.0
	QuickStart.QuickStartExample
	EMFeed.v2.FeedReader
	EMFeed.v2.NextBuffer

	Frequently asked questions
	How can data already read from a queue be re-retrieved?
	Can the API be queried for a specific equipment serial number(s) or date range?
	How long will data remain in a queue?
	Is all data flowing from the VisionLink-enabled equipment placed in an API user's queue?
	Does reading messages from a queue remove them from the queue?
	How frequently can an API be accessed?
	I’m receiving an error code. What does it mean?
	How do I get support for API?

	dontuseVisionLink_LegacyAPI_ProgrammersReference.pdf
	VLRT_API_01_0516_cover
	PDF
	Corporate Office
	Legal Notices
	Introduction
	About the VisionLink API
	What's new in this release
	Related information
	Accessing VisionLink API services
	Accessing and managing a queue
	TESTQUEUE
	Authorization to queues
	High level architecture
	API design
	VisionLink data visibility
	REST service
	Why REST for the VisionLink API?
	A closer look at the API service URI
	Current API
	Diagnostics Data
	Digital Switch Status
	Engine Parameters
	Engine Start/Stop Time
	Event Data
	Fleet Summary
	Fuel Information
	Geo Fence Alert
	SMU Location

	Example code
	Java
	C#

	Invoking the service
	Opening a connection
	Java
	C#

	Providing authentication
	Java
	C#

	Executing the GET operation
	Java
	C#

	Parsing the result
	Validating versus non-validating parsers
	VisionLink API schema
	Using XSD with Java
	Using XSD with Microsoft C#

	Get the next message buffer
	Java
	C#

	Detecting duplicate messages
	Tying messages together
	Quick start examples
	Java quick start example, version 2.0
	cat.em.feed.example.QuickStartExample2
	cat.em.feed.commonv2.NextBuffer

	C# quick start example, version 2.0
	QuickStart.QuickStartExample
	EMFeed.v2.FeedReader
	EMFeed.v2.NextBuffer

	Frequently asked questions
	How can data already read from a queue be re-retrieved?
	Can the API be queried for a specific equipment serial number(s) or date rang...
	How long will data remain in a queue?
	Is all data flowing from the VisionLink-enabled equipment placed in an API us...
	Does reading messages from a queue remove them from the queue?
	How frequently can an API be accessed?
	I’m receiving an error code. What does it mean?
	How do I get support for API?

